Cochlear Implants - with No Exterior Hardware - Its Here

Researchers at MIT’s Microsystems Technology Laboratory (MTL), together with physicians from Harvard Medical School and the Massachusetts Eye and Ear Infirmary (MEEI), have developed a new, low-power signal-processing chip that could lead to a cochlear implant that requires no external hardware. The implant would be wirelessly recharged and would run for about eight hours on each charge.

The researchers describe their chip in a paper they’re presenting this week at the International Solid-State Circuits Conference. The paper’s lead author — Marcus Yip, who completed his PhD at MIT last fall — and his colleagues Rui Jin and Nathan Ickes, both in MIT’s Department of Electrical Engineering and Computer Science, will also exhibit a prototype charger that plugs into an ordinary cell phone and can recharge the signal-processing chip in roughly two minutes.

“The idea with this design is that you could use a phone, with an adaptor, to charge the cochlear implant, so you don’t have to be plugged in,” says Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and corresponding author on the new paper. “Or you could imagine a smart pillow, so you charge overnight, and the next day, it just functions.”

Adaptive reuse

Existing cochlear implants use an external microphone to gather sound, but the new implant would instead use the natural microphone of the middle ear, which is almost always intact in cochlear-implant patients.

The researchers’ design exploits the mechanism of a different type of medical device, known as a middle-ear implant. Delicate bones in the middle ear, known as ossicles, convey the vibrations of the eardrum to the cochlea, the small, spiral chamber in the inner ear that converts acoustic signals to electrical. In patients with middle-ear implants, the cochlea is functional, but one of the ossicles — the stapes — doesn’t vibrate with enough force to stimulate the auditory nerve. A middle-ear implant consists of a tiny sensor that detects the ossicles’ vibrations and an actuator that helps drive the stapes accordingly.

The new device would use the same type of sensor, but the signal it generates would travel to a microchip implanted in the ear, which would convert it to an electrical signal and pass it on to an electrode in the cochlea. Lowering the power requirements of the converter chip was the key to dispensing with the skull-mounted hardware. Chandrakasan’s lab at MTL specializes in low-power chips, and the new converter deploys several of the tricks that the lab has developed over the years, such as tailoring the arrangement of low-power filters and amplifiers to the precise acoustic properties of the incoming signal.

But Chandrakasan and his colleagues also developed a new signal-generating circuit that reduces the chip’s power consumption by an additional 20 to 30 percent. The key was to specify a new waveform — the basic electrical signal emitted by the chip, which is modulated to encode acoustic information — that is more power-efficient to generate but still stimulates the auditory nerve in the appropriate way. The waveform was based on prior research involving simulated nerve fibers, but the MIT researchers tailored it for cochlear implants and found a low-power way to implement it in hardware. Two of their collaborators at MEEI — Konstantina Stankovic, an ear surgeon who co-led the study with Chandrakasan, and Don Eddington — tested it on four patients who already had cochlear implants and found that it had no effect on their ability to hear. Working with another collaborator at MEEI, Heidi Nakajima, the researchers have also demonstrated that the chip and sensor are able to pick up and process speech played into a the middle ear of a human cadaver.

“It’s very cool,” says Lawrence Lustig, director of the Cochlear Implant Center at the University of California at San Francisco. “There’s a much greater stigma of having a hearing loss than there is of having a visual loss. So people would be very keen on losing the externals for that reason alone. But then there’s also the added functional benefit of not having to take it off when you’re near water or worrying about components getting lost or broken or stolen. So there are some important practical considerations as well.”

So now the question is: What year will this be approved by the FDA? My guess is 2016. Also wonder if hearing level will be improved over current external Cochlear Implants. My guess would be (yes) since the user would still be using his or her ear canal to collect sound to the middle ear Cochlear Implant. That should be an improvement over an external Cochlear. I assume the longer operation time (3 to 4 hours) is due to implanting everything under the skull, in the middle ear and near the cochlear. Not sure how you will feel when you wake up, but it probably won’t feel any different then when current patients (get a CI) wake up after have a hole drilled in their skull. Also wonder if there is a waiting period to turn on internal CI (2 months or so), similar to what CI patients have to wait for an external CI? The really great news about all of this is that it will be covered under Medicare, since its considered a Cochlear Implant and basically does (though better) what current CI do. THIS COULD BE THE “BIG” CHANGE SEVERE TO PROFOUND PEOPLE TO DEAF PEOPLE HAVE BEEN WAITING FOR, AS FAR AS THE NEXT MAJOR STEP IN IMPROVING CI TECHNOLOGY.

Impressive article by still early in the game. Basically this is still a prototype chip that is probably a few years off (maybe more) from being offered to those in need. Hopefully MEEI and Harvard Medical School can take what MIT’s Microsystems Technology Laboratory had developed and put it into real use. Not going to happen tomorrow but looks encouraging for the future. As in 2016 or around then, if we don’t get to much FDA red tape.

This is very exciting. Are there any developments on this?

I’ve spoken to one patient who is very unhappy with the cochlear implant and didn’t like the machine quality sound

Internal only are NOT yet available. I was told by my surgeon and his expert that there was a clinical trial 10years ago where 3 people were implanted with internal only devices. Due to the problems, no one has been implanted with these since. Some of the problems they had were as follows:

    1) Microphones picking up unwanted internal noises such as heart beat, digestion, etc.

    2) Limited battery life of rechargeable battery. At that time, the best they could do was between 6-8 hours of battery life. Most people have longer than 6-8 days, so the recipients of these were forced to carry their external components and often wear them anyway, negating some of the benefit of "internal" only implant.

   3) Because the battery is internal, surgery is required to replace the battery. When they implanted these, the life of the battery was about 10 years so having more surgery to change the battery every 10 years is a negative. 

Now of course, technology is better including better microphones, longer battery life and ability to hold a charge more than 6-8, but they have still not begun implanting internal only again. I was told probably inside of 5 years… maybe even 2-3 years they probably will. BUT if you’re suffering from hearing loss and need to hear now, waiting 2,3, 5 years, is like forever.

Also, I was told that since the people in the trial were due for the battery replacement surgery, they were all given an option to stay with the internal only or be upgraded to the latest version of the internal/external model for free. Despite the issues mentioned above, all of them decided to keep what they had. They enjoyed being able to have hearing awareness when “sleeping” and also in the shower (when a person would normally not be wearing the external part).

How about Cochlear CARINA middle-ear device, or company /product called ESTEEM? Internal implant only , so 'invisible ’ Anyone know or heard if good? Very few reviews or testimonials.

I saw my CI surgeon yesterday and Ive booked in for my bimodal CI for next year. He asked if I was interested in being part of the Cochlear human trials for the fully implanted CI, i told him I think I’ll stick to the N7 thanks.